
Phase transitions in an aging network

Kamalika Basu Hajra* and Parongama Sen†

Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
(Received 2 April 2004; published 10 November 2004)

We consider a growing network in which an incoming node gets attached to theith existing node with the
probability Pi ~ki

bti
a, whereki is the degree of theith node andti its present age. The phase diagram in the

a−b plane is obtained. The network shows scale-free behavior, i.e., the degree distributionPskd,k−g with
g=3 only along a line in this plane. Small world property, on the other hand, exists over a large region in the
phase diagram.
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Complex weblike structures describe a wide variety of
systems of high technological and intellectual importance.
The statistical properties of many such networks have been
studied recently with much interest. Such networks with
complex topology are common in nature and examples in-
clude the World Wide Web, the Internet structure, social net-
works, communication networks, and neural networks, to
name a few[1–3].

Some of the common features which are of importance in
these networks of diverse nature are:

(i) Diameter of the network. This is defined as the maxi-
mal shortest path over all vertex pairs. The networks in
which the diametersDd varies as the logarithm of the number
of nodessNd, i.e, D~ lnsNd, are said to have thesmall world
(SW) property. On the other hand, ifD varies as a power of
N we get what can be termed asregular networks. One can
also studyD, the average shortest distance between pairs of
nodes. In general,D andD have the same scaling behavior.

(ii ) Clustering coefficient. A common property of many
real networks is the tendency to form clusters or triangles,
quantified by theclustering coefficient. This is in contrast to
random networks[4] where small world property is present
but the clustering tendency is absent.

(iii ) Degree distribution. The node degree distribution
function Pskd gives the probability that a randomly selected
node has exactlyk edges. In a random network this is a
Poisson distribution. In many real world networksPskd
shows a power law decay and such networks are termed
scale free networks.

In order to emulate the different features of real networks
several models have been proposed. While the Watts-
Strogatz[5] network provides an appropriate model for the
small world network(i.e., small diameter and finite cluster-
ing coefficient), scale free properties of a network can be
reproduced by models proposed later by Barabási and Albert
(BA) [6] and independently by Hubermann and Adamic[7].

In the BA model, a network is grown from a few nodes
and new nodes are added one by one. At a timet, the incom-
ing node is connected randomly to theith existing node with
the attachment probabilityPistd given by

Pistd , kistd, s1d

whereki is the degree of theith node. The degree distribution
in the BA model shows the scale-free behavior

Pskd , k−g, s2d

with g=3.
Following its introduction, several modifications in the

BA model have been studied. A few of them are worth men-
tioning here in the context of the present paper. Nonlinear
dependence of the attachment probability onk, in the model
designed by Krapivskyet al. (KRL) [8], shows that the
scale-free property exists only for the linear dependence.
This nonlinear model has been studied in much detail very
recently in Ref.[9]. On the other hand, the BA model on a
Euclidean network[10,11] has also been considered in which
the attachment probability has been modified as follows:

Pistd , kistdbld, s3d

where l is the Euclidean length between the new and old
nodes. A phase diagram in theb−d plane was obtained along
with other interesting features.

Another important modification in the BA model has been
made by incorporating time dependence in the network
[12,13]. In real life networks, a time factor may also modu-
late the attachment probability. In most of the real world
networks, aging of the nodes usually takes place, e.g., one
rarely cites old papers, or in social networks, people of the
same age are more likely to be linked. Dorogovtsev and
Mendes(DM) [12] studied the case when the connection
probability of the new site with an old one is not only pro-
portional to the degreek but also to the power of its present
aget, such that

Pistd , kistdti
a, s4d

and they showed both numerically and analytically that the
scale free nature disappears whena,−1 (it may be noted
here thatti is also the “age difference” between theith node
and the new node). Here a governs the dependence of the
attachment probability on the age difference of two nodes,
i.e., for negative values ofa, a new node will tend to attach
itself to the younger nodes. Therefore for the extreme case
a→−`, a new node will attach itself to its immediate pre-
decessor while for the casea→`, the oldest and a few very
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old nodes will get more edges. The time dependence presents
a competing effect whena,0 but fora.0, the older nodes
get even more rich, similar to the rich gets richer effect.

Encouraged by the existence of the various phase transi-
tions observed in the modified BA models, we have further
generalized the time dependent BA network. Here we gener-
ate a network such that the attachment probability is given
by

Pistd , kistdbti
a. s5d

We expect here thatbÞ1 will change the behavior of the
DM model as in Ref.[8]. The competing effect ofa is able
to destroy the scale free nature of the DM modelsb=1d. The
effect of a positivebs.1d and negativea could re-instate the
scale free behavior as in Ref.[11] and it is also possible to
obtain a phase diagram in thea−b plane. Formally Eq.(5) is
analogous to Eq.(3). However, here the nodes are chrono-
logical, i.e., the age of the initial node ist at time t, that of
the second nodet−1, and so on. In the Euclidean network,
on the other hand, the coordinates of the nodes are uncorre-
lated. Moreover, the dimensionality plays an important factor
in it.

The known limits of this model are therefore;
(i) b=1, a=0: BA network;
(ii ) b any value,a=0: KRL network;
(iii ) b=1, a any value: DM network.
When a and b are both zero, we get a random growing

network which shows an exponential decay ofPskd [14].
The network is generated in the usual manner where we

start with a single node and at every time step the new node
gets attached to one of the existing nodes with an attachment
probability given by Eq.(5).

We have considered nodes with a single incoming link
such that there are no loops and the clustering coefficient is
zero. Thus we focus our attention on the degree distribution
and the average distance to study the small world and scale
free behavior.

From Eq.(5) we predict that for anyb asa→ +` a gel
formation is expected when majority of the nodes tend to get
attached to a particular node. On the other hand, whena→
−` we expect aregular chainformation (in the time space)
when each node gets attached to its immediate predecessor.
The average shortest distancesDd for both a→ +` and a
→−` is easy to calculate. Whena→−`, D is given by

D =

o
k=1

N

fksk − 1d + sN − kdsN − k + 1dg

2NsN − 1d
= sN + 1d/3.

On the other hand, for large values ofa, D has a finite
value,Os1d. Hence it is natural to expect a transition from
a small world behavior to a regular behavior asa is varied.
In fact for b=0, one can locate approximately the transition
point using some simple arguments.

In analogy with Ref.[15], one can define here an “age
difference factor”Dti j = uti −t ju if the ith node of ageti and
j th node of agetj are connected. If the network has been

evolved until a timetsù2d, then for the incoming node we
can write

kDtlt =

E
1

t

ta+1dt

E
1

t

tadt

. s6d

For the small world property, the behavior ofkDtl for
large t should be studied. From Eq.(6), for large t, Dt
,Os1d for a,−2 and therefore there can be no small world
behavior fora,−2 for large networks. On the other hand,
for a.−1, kDtl,Ostd, from which one can expect SW
property fora.−1. We in fact find a small world to regular
network transition ata=−1 numerically.

The simulations have been made using a maximum of
2000 nodes for studying small world properties and 4000
nodes for determining degree distribution, using a maximum
of 1000 configurations. In the analysis of the small world
characteristics, we calculateD for the networks for different
values ofb anda. TheD vs N curve is generally of the form
D,Nl,where the exponentl depends ona (see Fig. 1).

In order to locate the transition to the small world(where
l is either zero or has a very small value) we note the varia-
tion of l with a for different values ofb. We observe that for
all values ofb, there is a sharp fall inl from unity to a very
small value indicating a transition from regular to small
world behavior. The transition point shifts to a more negative

FIG. 1. The variation of the average shortest distanceD with N
for various values ofa at (a) b=2 and(b) b=0.5. In (a) the expo-
nentl changes value from 1 to 0 sharply as we go from the top to
the bottom of the figure, corresponding toa=−10,−5,−3,−2,
−1,0. In (b) l changes from 1 to a relatively small value asa=
−10,−5,−2,0 from top to bottom.
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value of a as we move from smaller to larger values ofb.
Typical l vs a plots are shown in Fig. 2.

Next we study the degree distributionPskd for the net-
work for several values ofa and b. For the regular chain
limit sa→−`d, most of the vertices have degree 2, while for
the gel phasesa→ +`d, there will be a very high maximal
degree and many leaves(i.e., nodes with degree =1). Thus
the different phases can be identified from the behavior of
Pskd. First let us discuss the known case forb=1.We find
that Pskd has an exponential decay ata=−1 as in Ref.[12]
and has scale-free(SF) behavior for a.−0.5. The latter
value does not agree with Ref.[12] and the possible reasons
of discrepancy are discussed later. For other values ofa,
Pskd has a stretched exponential(SE) behavior, i.e.,

Pskd , exps− axbd, s7d

whereb depends ona. Allowing b to assume values greater
than unity, we find that SF behavior exists only for a specific
value of a=a* , e.g., atb=3 we obtain this behavior ata
=a* =−2.5 (Fig. 3).

For a.a* , we get a gel-like behavior, while fora,a* ,
we again get a stretched exponential behavior.The scale-free
behavior forbù1 always occurs withg=3 as in the BA
network. For b,1, SF behavior is not observed for any
value ofa. HerePskd shows a SE behavior as in Eq.(7).

In Fig. 4, we have shown the phase diagram in thea−b
plane. We have plotted the phase boundary between the SW
and the regular network regions, the curve along which
scale-free behavior exists and the line along whichb=1. The
b=1 line is not a phase boundary, but it has the interesting
property that it has the behavior of a random growing net-
work albeit with nonzero values ofa and b. For negative
values ofa, aging can be regarded as a competitive phenom-
enon to preferential attachment to the extent that one recov-
ers the random behavior even for high values ofb along this
line.

A small world network is not necessarily scale free but a
scale-free network is usually a small world barring some
exceptional or artificial cases(e.g., if one considersN num-
ber of BA networks in a series, it is a scale-free but not a
small world network). To the right of the scale-free line and
above it, the network shows a gel-like behavior. Both the

scale-free and gel regions do have the small world property,
as expected, but there are finite regions in the phase diagram
where the degree distribution is not a power law but of dif-
ferent types(e.g., exponential or stretched exponential) with
small world behavior.

In summary, we have generalized the BA network to in-
clude time-dependent or aging effects in the attachment

FIG. 2. The variation of the exponentl with a for different
values ofb (from right to left,b=0,2,3,4). There is a sharp tran-
sitionin the value ofl from +1 to 0 as network behavior changes
from regular to small world.

FIG. 3. (a) The Pskd vs k plot in log-log scale forb=3. Here, at
a=a* =−2.5 (dashed line), there is scale free behavior, while for
other values(e.g.,a=−2.8,−2.3) this behaviour is lost.(b) Pskd vs
k plot in log-linear scale forb=0.8. Here exponential behavior is
observed ata=−0.9 (dashed line), while for other values(e.g., a
=−0.5,−2.0) stretched exponential nature is observed.

FIG. 4. The phase diagram for the given network in thea−b
plane. The small world(SW) regions with gel-like as well as
stretched exponential(SE) behavior, the regular chain region, and
the scale free region are indicated. The network is scale free along
the thinner solid line while the broken line is the phase boundary for
SW-regular transition and these two lines merge along the thicker
solid line. The dotted line is the one along whichb=1, i.e., where
the network is random in nature.(All lines are guides to the eye.)
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probability [Eq. (5)] such that both the time dependence and
the degree dependence can be parametrically tuned. A phase
diagram is obtained in thea -b plane, wherea ,b are the
parameters governing the two factors, respectively. We claim
that this is the most generalized network where both time
dependence and degree dependence are incorporated in the
preferential attachment. There is a quantitative disagreement
in the transition point atb=1 as compared to Ref.[12] which
may be because of the finite sizes considered here. The time
and effort required to locate phase transition points are con-
siderable and a finite size analysis has not been attempted
therefore. Other results known earlier, e.g., gel formation be-
yond b.1 for a=0, exponential decay ofPskd for both
a ,b=0, etc. have been recovered in our simulations. Similar
to the Euclidean network[10,11], the scale free behavior is
found to exist along a single line here. In fact, as regards the
scale-free boundary, the present phase diagram is very much
similar to that obtained in Ref.[11]. However, here the net-
work belongs to the BA universality classsg=3d along the
entire line. Moreover, one can compare the present results
with the one dimensional Euclidean network only for which

the phase diagram is available. A phase boundary for small
world to regular transition has also been obtained. The net-
work may have small world behavior even when the degree
distribution is exponential or stretched exponential. Along
the a=0 line, the network retains the small world behavior,
consistent with the results of Ref.[9], where it was found
that D assumed a finite values,ln Nd for networks of dif-
ferent sizes for all values ofb.

It is worth mentioning here that the limiting forms of the
degree distribution, at extreme values ofa, are delta func-
tions in nature, but we have restricted our analysis to finite
values of a. Also, we find that the phase diagram shows
varied features for values ofa,0 for which the model cor-
responds to realistic networks like citation, collaboration, or
social networks.
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