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Phase transitions in an aging network
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We consider a growing network in which an incoming node gets attached ithtle&isting node with the
probability IT; < kA7, wherek; is the degree of théth node andr, its present age. The phase diagram in the
a— B plane is obtained. The network shows scale-free behavior, i.e., the degree distritionk™ with
y=3 only along a line in this plane. Small world property, on the other hand, exists over a large region in the
phase diagram.
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Complex weblike structures describe a wide variety of IT;(t) ~ ki(t), (1)
systems of high technological and intellectual importance. . ) o
The statistical properties of many such networks have beeyyherek; is the degree of thith node. The degree distribution
studied recently with much interest. Such networks within the BA model shows the scale-free behavior
complex topology are common in nature and examples in- P(K) ~ K ?)
clude the World Wide Web, the Internet structure, social net- '
works, communication networks, and neural networks, towith y=3.

name a few[1-3]. _ _ ~ Following its introduction, several modifications in the
Some of the common features which are of importance irBA model have been studied. A few of them are worth men-
these networks of diverse nature are: tioning here in the context of the present paper. Nonlinear

(i) Diameter of the networkThis is defined as the maxi- dependence of the attachment probabilitykpin the model
mal shortest path over all vertex pairs. The networks indesigned by Krapivskyet al. (KRL) [8], shows that the
which the diamete(D) varies as the logarithm of the number scale-free property exists only for the linear dependence.
of nodes(N), i.e, Dx=In(N), are said to have themall world  This nonlinear model has been studied in much detail very
(SW) property. On the other hand, ¥ varies as a power of recently in Ref.[9]. On the other hand, the BA model on a
N we get what can be termed e=gular networksOne can  Euclidean network10,11 has also been considered in which
also studyD, the average shortest distance between pairs ahe attachment probability has been modified as follows:
nodes. In generaD andD have the same scaling behavior. 85

(i) Clustering coefficientA common property of many I5(®) ~ ki)™, 3
real networks is the tendency to form clusters or triangleswhere| is the Euclidean length between the new and old
quantified by theclustering coefficientThis is in contrast to  nodes. A phase diagram in tjfe- 5 plane was obtained along
random networkg4] where small world property is present with other interesting features.
but the clustering tendency is absent. Another important modification in the BA model has been

(iii) Degree distribution The node degree distribution made by incorporating time dependence in the network
function P(k) gives the probability that a randomly selected [12,13. In real life networks, a time factor may also modu-
node has exactlk edges. In a random network this is a late the attachment probability. In most of the real world
Poisson distribution. In many real world networl¥k)  networks, aging of the nodes usually takes place, e.g., one
shows a power law decay and such networks are termedhrely cites old papers, or in social networks, people of the
scale free networks same age are more likely to be linked. Dorogovtsev and

In order to emulate the different features of real networkdMendes(DM) [12] studied the case when the connection
several models have been proposed. While the Wattgsrobability of the new site with an old one is not only pro-
Strogatz[5] network provides an appropriate model for the portional to the degrek but also to the power of its present
small world network(i.e., small diameter and finite cluster- ager, such that
ing coefficienj, scale free properties of a network can be w
reproduced by models proposed later by Barabasi and Albert IO ~ k(O 7, (4)

(BA) [6] and independently by Hubermann and Adaifit  and they showed both numerically and analytically that the
In the BA mOdel, a network is grown from a few nodes scale free nature disappears whes -1 (|t may be noted
and new nodes are added one by one. At a tintiee incom-  here thatr, is also the “age difference” between tik node
ing node is connected randomly to ttib eXiSting node with and the new node Here o governs the dependence of the
the attachment probabilith;(t) given by attachment probability on the age difference of two nodes,
i.e., for negative values af, a new node will tend to attach
itself to the younger nodes. Therefore for the extreme case
*Email address: kamalikabasu2000@yahoo.com a——o, a new node will attach itself to its immediate pre-
"Email address: parongama@vsnl.net decessor while for the cage— «, the oldest and a few very
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old nodes will get more edges. The time dependence presents i

a competing effect whear< 0 but for o> 0, the older nodes 1000 ¢

get even more rich, similar to the rich gets richer effect. g
Encouraged by the existence of the various phase transi-

tions observed in the modified BA models, we have further o

generalized the time dependent BA network. Here we gener- -

ate a network such that the attachment probability is given 0

by

100 E

I5i(1) ~ k()P (5

We expect here thg®+# 1 will change the behavior of the
DM model as in Ref[8]. The competing effect o& is able
to destroy the scale free nature of the DM moggt1). The 1000
effect of a positive3(>1) and negativer could re-instate the
scale free behavior as in Rgfl1] and it is also possible to o
obtain a phase diagram in the- 8 plane. Formally Eq(5) is 100
analogous to Eq(3). However, here the nodes are chrono-
logical, i.e., the age of the initial node isat timet, that of
the second nodée-1, and so on. In the Euclidean network,
on the other hand, the coordinates of the nodes are uncorre-
lated. Moreover, the dimensionality plays an important factor
n It-r'he known limits of this model are therefore: FIG. 1. The variation of the average shortest distabagith N

(i) B=1, a=0: BA network: for various values ofr at (@) =2 and(b) 8=0.5. In(a) the expo-

(i) B any value,a=0: KRL network: nent\ changes value_ from1to O sharp_ly as we go from the top to

(i) B=1, a any value: DM network. the bottom of the figure, corresponding te=-10,-5,-3,-2,

When « and B are both zero, we get a random growing :ibo;lsnft;) )o\fcrgin?oe: tfc:Ot:?)ttlortﬁ a relatively small value @s
network which shows an exponential decayRgk) [14]. R '

The network is generated in the usual manner where we i i i ,
start with a single node and at every time step the new nodgvolved until a timet(=2), then for the incoming node we
gets attached to one of the existing nodes with an attachmefgn Write
probability given by Eq(5).

We have considered nodes with a single incoming link

10

+1
such that there are no loops and the clustering coefficient is L 7dr
zero. Thus we focus our attention on the degree distribution Ay = ——. (6)
and the average distance to study the small world and scale ~dr

free behavior.

From Eq.(5) we predict that for any3 as a— +o a gel
formation is expected when majority of the nodes tend to get For the small world property, the behavior ok7) for
attached to a particular node. On the other hand, when large t should be studied. From Ed6), for larget, A7
- we expect aegular chainformation(in the time space  ~ O(1) for «<-2 and therefore there can be no small world
when each node gets attached to its immediate predecessbehavior fora<<-2 for large networks. On the other hand,
The average shortest distand®) for both a— +«< anda  for a@>-1, (A7)~O(t), from which one can expect SW

1

—— |s easy to calculate. Whewm— —, D is given by property fora>-1. We in fact find a small world to regular
network transition atv=-1 numerically.
N The simulations have been made using a maximum of
S [k(k-1) +(N-K)(N-k+1)] 2000 nodes for studying small world properties and 4000
k=1 nodes for determining degree distribution, using a maximum
D= 2N(N-1) =(N+1)/3. of 1000 configurations. In the analysis of the small world

- characteristics, we calculai for the networks for different
On the other hand, for large values @f D has a finite  values ofg anda. TheD vs N curve is generally of the form
value ~O(1). Hence it is natural to expect a transition from D ~ N where the exponernx depends onx (see Fig. L

a small world behavior to a regular behavior @ss varied. In order to locate the transition to the small wogldhere
In fact for =0, one can locate approximately the transition\ is either zero or has a very small vajuee note the varia-
point using some simple arguments. tion of N with « for different values of3. We observe that for

In analogy with Ref.[15], one can define here an “age all values ofg, there is a sharp fall in from unity to a very
difference factor”AriJ-=|ri—rj| if the ith node of agd; and  small value indicating a transition from regular to small
jth node of age; are connected. If the network has beenworld behavior. The transition point shifts to a more negative
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FIG. 2. The variation of the exponent with « for different 1 , , .
values ofg (from right to left, 3=0,2,3,4. There is a sharp tran- E
sitionin the value of\ from +1 to 0 as network behavior changes 01 L
from regular to small world. I
E L
g 0.01 £
value of @« as we move from smaller to larger values @f = E
Typical A vs « plots are shown in Fig. 2. 0.001 b
Next we study the degree distributid(k) for the net-
work for several values ofr and 8. For the regular chain 0.0001 L
limit (¢— —), most of the vertices have degree 2, while for ’ 0

the gel phaséa— +), there will be a very high maximal
the ciferent phases can be Kdentfied from the pehavior of, _"1C: 3 (8 TheP(K) vsk plt i og-og scale op=3. Here,a
; P . i a=a"=-2.5 (dashed ling there is scale free behavior, while for
P(k). First let us discuss Fhe known case '@Fl.We find other valuege.g.,a=-2.8,-2.3 this behaviour is lostb) P(k) vs
that P(k) has an exponential decay @& -1 as in Ref[12]  y piot in log-linear scale fo3=0.8. Here exponential behavior is
and has scale-fre¢SF) behavior for @>-0.5. The latter gpserved aw=-0.9 (dashed ling while for other valuege.qg., a
value does not agree with R¢fL2] and the possible reasons =-0.5,-2.0 stretched exponential nature is observed.
of discrepancy are discussed later. For other valueg,of

P(k) has a stretched exponent{@E) behavior, i.e., scale-free and gel regions do have the small world property,

_ _ as expected, but there are finite regions in the phase diagram
P9 ~ exp(-ax), @) where the degree distribution is not a power law but of dif-

whereb depends onr. Allowing 3 to assume values greater ferent typege.g., exponential or stretched exponentiith
than unity, we find that SF behavior exists only for a specificsmall world behavior.

value of a=a’, e.g., at3=3 we obtain this behavior at In summary, we have generalized the BA network to in-
=a'=-2.5(Fig. 3. clude time-dependent or aging effects in the attachment

For a>a", we get a gel-like behavior, while far<a’,
we again get a stretched exponential behavior.The scale-free
behavior for=1 always occurs withy=3 as in the BA
network. For3<1, SF behavior is not observed for any
value of a. Here P(k) shows a SE behavior as in EQ).

In Fig. 4, we have shown the phase diagram in dheB
plane. We have plotted the phase boundary between the SW
and the regular network regions, the curve along which
scale-free behavior exists and the line along wiieii. The
b=1 line is not a phase boundary, but it has the interesting

B
Small World (gel)

Scale F
Regular | cae e

\
v

property that it has the behavior of a random growing net-

work albeit with nonzero values af and 8. For negative ‘Sm;ﬁ.wm B

values ofa, aging can be regarded as a competitive phenom- & F o

enon to preferential attachment to the extent that one recov- - -3 -2 - 00

ers the random behavior even for high valuegaflong this FIG. 4. The phase diagram for the given network in theg
line. plane. The small worldSW) regions with gel-like as well as

A small world network is not necessarily scale free but astretched exponentidSE) behavior, the regular chain region, and
scale-free network is usually a small world barring somege scale free region are indicated. The network is scale free along
exceptional or artificial case®.g., if one considerl num-  the thinner solid line while the broken line is the phase boundary for
ber of BA networks in a series, it is a scale-free but not asw-regular transition and these two lines merge along the thicker
small world networlc To the right of the scale-free line and solid line. The dotted line is the one along whiok 1, i.e., where
above it, the network shows a gel-like behavior. Both thethe network is random in naturéAll lines are guides to the eye.
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probability [Eq. (5)] such that both the time dependence andthe phase diagram is available. A phase boundary for small
the degree dependence can be parametrically tuned. A phag@rld to regular transition has also been obtained. The net-
diagram is obtained in the-g plane, wherea,8 are the  work may have small world behavior even when the degree
parameters governing the two factors, respectively. We claingjstribution is exponential or stretched exponential. Along

that this is the most generalized network where both timeye =0 |ine, the network retains the small world behavior,
dependence and degree dependence are incorporated in Eﬁ)‘?‘usistent with the results of Ref], where it was found

preferential attachment. There is a quantitative disagreeme o X
in the transition point 38=1 as compared to RefL2] which rfhat D assumed a finite value~In N) for networks of dif-

may be because of the finite sizes considered here. The tinfgrent sizes for all values 8. o

and effort required to locate phase transition points are con- It is worth mentioning here that the limiting forms of the
siderable and a finite size analysis has not been attemptétegree distribution, at extreme values @fare delta func-
therefore. Other results known earlier, e.g., gel formation betions in nature, but we have restricted our analysis to finite
yond B>1 for =0, exponential decay oP(k) for both  values ofa. Also, we find that the phase diagram shows
a,B=0, etc. have been recovered in our simulations. Similawvaried features for values af<0 for which the model cor-

to the Euclidean networkl0,11], the scale free behavior is responds to realistic networks like citation, collaboration, or
found to exist along a single line here. In fact, as regards theocial networks.

scale-free boundary, the present phase diagram is very much

similar to that obtained in Refl11]. However, here the net- ~ We thank S. S. Manna for useful comments. K.B.H. is
work belongs to the BA universality clagy=3) along the grateful to CSIR(India) F.NO.9/28609/2003-EMR-I for fi-
entire line. Moreover, one can compare the present resultdancial support. P.S. acknowledges DST Grant No. SP/S2/
with the one dimensional Euclidean network only for which M-11/99.
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